Um estudo brasileiro publicado na revista Scientific Reports demonstra que, usando algumas técnicas de inteligência artificial, é possível criar modelos eficientes de seleção genômica de cana-de-açúcar e de forrageiras, capazes de predizer, a partir do DNA, a performance em campo dessas gramíneas.
Em termos de acurácia, na comparação com as técnicas tradicionais de melhoramento, a metodologia desenvolvida com apoio da FAPESP apresenta um ganho de 50% na capacidade preditiva. É a primeira vez que o método baseado em aprendizado de máquina foi proposto para plantas poliploides (nas quais as células possuem mais de dois pares de cromossomos), como é o caso das gramíneas estudadas, viabilizando sua seleção genômica com alta eficiência.
Aprendizado de máquina é uma subárea da ciência da computação que envolve métodos de estatística e otimização. Com inúmeras aplicações, seu objetivo é criar algoritmos que consigam extrair de maneira automática padrões de um conjunto de dados.
Pode ser útil para predizer a performance de uma planta – por exemplo, se ela é resistente ou tolerante a algum tipo de estresse biótico (pragas e doenças causadas por insetos, nematoides, fungos ou bactérias) ou abiótico (frio, déficit hídrico, alta salinidade ou deficiência nutricional do solo).
Já o que tradicionalmente se faz nos programas de melhoramento são cruzamentos.
“Você estabelece populações por meio de cruzamentos de plantas que sejam interessantes. No caso da cana, uma que produza muito açúcar com outra que seja mais resistente, por exemplo. Você cruza e avalia a performance dos genótipos oriundos desses cruzamentos em campo”, explica Alexandre Hild Aono, cientista da computação formado pela Universidade Federal de São Paulo (Unifesp) e autor principal do artigo.
Melhoramento da cana tradicional é demorado e custa caro
“ Esse processo de avaliação leva muito tempo e é caro. Já pelo método que a gente propôs, é possível predizer qual será a performance dessas plantas antes mesmo de elas crescerem. Conseguimos por meio do material genético ter uma estimativa de como será o rendimento. Isso é bastante interessante, pois poupa muitos anos de avaliação.”
No caso da cana-de-açúcar, o desafio é extremamente complexo. O melhoramento tradicional leva entre nove e 12 anos e custa muito caro, explica Anete Pereira de Souza, professora titular do Departamento de Biologia Vegetal do Instituto de Biologia da Universidade Estadual de Campinas (Unicamp) que orientou Aono em seu doutorado, realizado no Centro de Biologia Molecular e Engenharia Genética (CBMEG).
“A partir do momento em que o melhorista identifica uma planta interessante, multiplica por clones para que aquele genótipo não seja perdido. Mas isso demora e custa muito. Um exemplo extremo é o melhoramento de seringueira, que leva até 30 anos”, diz Souza.
Para superar tais dificuldades, conta a cientista, é possível recorrer ao “melhoramento de plantas 4.0”, que é altamente dependente da análise de dados e ferramentas computacionais e estatísticas de alta eficiência. Cada genotipagem por sequenciamento pode envolver 1 bilhão de sequências.
O grande desafio que os cientistas enfrentam com as plantas poliploides, caso da cana-de-açúcar e das gramíneas forrageiras, é sua complexidade genômica.
Nossos especialistas estão prontos para tirar qualquer dúvida e ajudá-lo a realizar a melhor compra.